11718

3 Hours/70 Marks

Seat No.

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with **neat** sketches **wherever** necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any five of the following:

10

- a) Evaluate log₃81.
- b) Show that the points (8, 1)(3, -4) and (2, -5) are collinear using determinant.
- c) Without using calculator find the value of sin(105°).
- d) Find the area of a rhombus whose diagonals are of lengths 10 cm and 8.2 cm.
- e) If the volume of a sphere is $\frac{4\pi}{3}$ cm³. Find its surface area.
- f) Find the range and coefficient of range of the data: 50, 90, 120, 40, 180, 200, 80.
- g) If the coefficient of variation of certain data is 5 and mean is 60. Find the standard deviation.

2. Attempt any three of the following:

12

- a) If $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$ whether AB is singular or non-singular matrix?
- b) Resolve into partial fractions $\frac{x+3}{(x-1)(x+1)(x+5)}$.
- c) Using Cramer's rule solve x y 2z = 1; 2x + 3y + 4z = 4; 3x 2y 6z = 5.
- d) Compute the standard deviation for 15, 22, 27, 11, 9, 21, 14, 9.

Marks

12

12

12

3. Attempt any three of the following:

- a) If $\tan (x + y) = \frac{3}{4}$ and $\tan (x y) = \frac{8}{15}$. Prove that $\tan 2x = \frac{77}{36}$.
- b) If $A = 30^{\circ}$, verify that
 - i) $\sin 2A = 2 \sin A \cos A$

ii)
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

- c) Prove that $\cos 20 \cos 40 \cos 60 \cos 80 = \frac{1}{16}$.
- d) Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$.

4. Attempt any three of the following:

a) If $A = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix}$. Verify that $(AB)^T = B^TA^T$.

- b) Resolve into partial fraction $\frac{x^2 x + 3}{(x 2)(x^2 + 1)}$.
- c) Prove that $\sin (A + B) \sin (A B) = \sin^2 A \sin^2 B$.
- d) If $\sin A = \frac{1}{2}$ find the value of $\sin 3A$.
- e) Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A.$

5. Attempt any two of the following:

- a) i) Find the equation of straight line passes through the points (3, 5) and (4, 6).
 - ii) Find the distance between the parallel lines 3x y + 7 = 0 and 3x y + 16 = 0.
- b) i) Find the acute angle between the lines 2x + 3y + 5 = 0 and x 2y 4 = 0.
 - ii) Find the equation of the line through the point of intersection of lines, 4x + 3y = 8; and x + y = 1 and parallel to the line 5x 7y = 3.
- c) i) The area of a rectangular courtyard is 3000 sq.m. Its sides are in the ratio 6:5. Find the perimeter of courtyard.
 - ii) A circus tent is cylindrical to a height of 3m and conical above it. If its diameter is 105 m and slant height of cone is 5m, calculate the area of total canvas required.

Marks

12

6. Attempt any two:

a) Using matrix inversion method, solve x + y + z = 3; x + 2y + 3z = 4; x + 4y + 9z = 6.

b) Find mean, standard deviation and coefficient of variance of the following:

Class:	0-10	10 – 20	20 – 30	30 – 40	40 – 50
Frequency:	3	5	8	3	1

c) i) Calculate the range and coefficient of range for the following data:

Class:	21 – 25	26 – 30	31 – 35	36 – 40	41 – 45
Frequency:	4	16	38	12	10

ii) The two sets of observations are given below. Which of them is more consistent ?

Set I

$$\frac{1}{x} = 82.5$$

$$\bar{X} = 48.75$$

$$\sigma = 7.3$$

$$\sigma = 8.35$$